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Understanding social interactions is relevant across many domains and applications, including psychology, behavioral sciences,
human computer interaction, and healthcare. In this paper, we present a practical approach for automatically detecting
face-to-face conversations by leveraging the acoustic sensing capabilities of an off-the-shelf, unmodified smartwatch. Our
proposed framework incorporates feature representations extracted from different neural network setups and shows the
benefits of feature fusion. The framework does not require an acoustic model specifically trained to the speech of the individual
wearing the watch or of those nearby. We evaluate our framework with 39 participants in 18 homes in a semi-naturalistic
study and with four participants in free living, obtaining an F1 score of 83.2% and 83.3% respectively for detecting user’s
conversations with the watch. Additionally, we study the real-time capability of our framework by deploying a system on an
actual smartwatch and discuss several strategies to improve its practicality in real life. To support further work in this area by
the research community, we also release our annotated data of conversations.
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1 INTRODUCTION
Social interactions are communication exchanges between two or more individuals and play a critical role in
society [9]. They allow members of a community to socialize and provide a way for the spread and strengthening
of cultural norms, values and information. Because of its importance, the ability to passively and objectively
track and quantify face-to-face social interactions would be a breakthrough across several disciplines including
behavioral sciences [14, 26], information propagation and diffusion [67, 76], social network analysis [11, 73], and
the study of health and well-being [63, 69].
One of the fundamental components of social interactions is interpersonal communication, particularly

face-to-face spoken communication [65]. While face-to-face conversations have been traditionally studied and
documented via self-reports [14, 59], these methods pose a high burden on individuals and introduce biases
in the data. Recent studies have leveraged mobile devices to passively capture speech or social patterns in situ
[7, 53, 54, 57, 59]. However, they generally fall short of several aspects when it comes to inferring face-to-face
conversational events for users in real life. Firstly, not all speech is conversation, and the automated detection
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of speech from a spoken communication perspective (e.g., infer if the speech was a monologue or part of a
face-to-face conversation) is not widely explored. Secondly, although researchers have proposed methods to
gather information about social interactions with smartphones or collaborative sensing devices [8, 12, 25, 28],
none of the prior efforts have investigated the feasibility of leveraging commercial on-body sensing platforms
such as smartwatches, which can be less obtrusive for longitudinal deployment. Correspondingly, very little
research aims at modeling conversations on lightweight wearable devices, especially with an address to optimize
the model and engineering design. Lastly, the agnostic nature of social participants and environments in the real
world makes conversation detection different from traditional speaker diarization setups [4, 48].

To address the above research problems, we explore a practical approach for automatically detecting face-to-
face conversations by leveraging the acoustic sensing capabilities of an off-the-shelf smartwatch. In recent years,
smartwatches have been adopted in larger numbers and become increasingly more sophisticated. As a result,
thanks to improvements in sensing and computational capabilities, these devices have become a very compelling
platform for the real-time monitoring and inference of a myriad of human behaviors. We present a customized
model that shows the benefits of feature fusion for conversation detection on smartwatches. We also conduct
analysis with smartwatch data in the real world and study various techniques to improve the practicality of our
system. The contributions of our work are summarized below:

• A practical approach for detecting face-to-face conversations by leveraging acoustic sensing with an off-
the-shelf smartwatch. Our approach relies on a customized feature fusion framework based on lightweight
neural networks. We optimize deployment of this framework by exploring techniques for power usage
optimization based on adaptive sampling and contextual cues.

• An evaluation of our framework through a semi-naturalistic study of 39 participants (18 groups) in their
homes and an unconstrained free-living study of four participants, including one participant over a week.
In the semi-naturalistic study, our framework achieves an 83.2% F1 score for detecting user conversations.
In the free-living study, it achieves an 83.3% F1 score. To the best of our knowledge, this is the first in-depth
study to evaluate acoustic model performance for real-life face-to-face conversation detection based on a
smartwatch.

• A system implementation of our method that can run on a watch in real-time. With this implementation,
we demonstrate several strategies to improve the system’s practicality, demonstrating its ability to detect
conversations with low latency and optimized power consumption.

2 RELATED WORK
Over the last two decades, numerous studies have demonstrated the power of smartphones, wearable devices,
and personal computers to capture everyday human behaviors, activities of daily living, emotions, health states
and more [10, 13, 37, 68]. Additionally, sensor data from these devices has also been shown to be predictors of
contextual information about people and their surroundings [36, 50]. Despite these advances, the detection and
quantification of social interactions, a core element of society and human life, remains largely elusive. In this
section, we highlight relevant prior work related to this topic and compare it against the specific contributions of
our acoustic-based method.

2.1 Non-Acoustic-Based Methods for Detecting Social Interactions
Kim et al. shows that motion signals can be used for the inference of collaborations [30]. Bio signals collected
from the human body such as respiration and electrocardiogram (ECG) can also be used as indicators of social
behaviors, including speech [7, 16, 22, 61]. However, a major downside of such methods is that a dedicated device
is required to be attached to the body for continuous collection of physiological inputs. Researchers have also
explored the usage of radio signals captured by personal devices for monitoring people’s interaction behaviors.
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Radio signals are shown to be particularly useful for monitoring interactions in the same physical location
[25, 40, 47, 66]. Besides, studies by Palaghias et al. and Yan et al. validated that Bluetooth on different devices can
also be used to detect close contact among human subjects [58, 75]. However, the fact that radio and Bluetooth
systems typically rely on a collaborative sensing framework with multiple devices can be an obstacle to scalability.
More importantly, such modalities are often more related to the physical context rather than the actual spoken
components of interactions.

2.2 Social Context Detection with Acoustic Sensing
The usage of audio for inference of everyday human physical activities and contexts has been widely studied
[2, 36, 42, 45, 50]. To record data for longitudinal studies, Mehl et al. [54] developed the Electronically Activated
Recorder (EAR). It is a portable chest-worn recorder that can capture user audio once every 12 minutes for two
to four days. Similarly, Feng et al. proposed a system for continuous audio recording on a resource-constrained
mobile device [17]. The authors specifically developed a strategy to reduce the power consumption of the device
by only triggering the feature calculation steps during the target acoustic events. By using neural networks,
Lane et al. deployed a system for acoustic sensing on a smartphone [35]. Their system was tested with a variety
of acoustic sensing tasks, including classification of some common acoustic events, emotion recognition, and
speaker identification.

Audio can also be used to reveal specific human behaviors related to the social interaction process. For example,
Ahmed et al. [4] and Rachuri et al. [60] developed systems combining audio and sensor signals to recognize one’s
emotional states. Lu et al. [49] studied the viability of detecting stress from social interactions. Based on multiple
mobile platforms, Lee et al. [39] proposed Sociophone, a sensor fusion framework to detect users’ meta-linguistic
contexts including their turn-taking behaviors and roles. A similar effort was proposed by Li et al. [41], but the
authors applied multiple sensor boards attached to human bodies to capture the signals. Xu et al. used audio
collected on a smartphone to estimate the number of speakers in a meeting [74]. Hsiao et al. [24] showed that it
is possible to detect the social engagement level of a group conversation. They were able to extract turn-taking
features for a conversation group based on audio data collected by a smartphone. By training on user samples,
speaker identification techniques can also be adopted on real-time systems to infer the user identity [4, 48, 52].
Our work differs from the above efforts in several respects. Firstly, unlike the existing efforts [4, 24, 49,

60, 74] which focus on social contexts or user emotional factors, we focus on the detection of physical user
communications (e.g., through monologues or two-way face-to-face conversations). Secondly, unlike the above
speaker identification systems [4, 48, 52], we do not aim to build a speaker classifier to identify individuals in the
interaction process, which requires preliminary information collected from the speakers. In other words, our
work characterizes user behaviors in a purely speaker-agnostic phase. Thirdly, our study is based on a single
device rather than a collaborative framework of multiple devices, as in [39, 41]. Fourthly, our framework is based
on a smartwatch, which is not explored by any of the above efforts.

2.3 Voice Activity Detection
Voice activity detection is a research area that has been extensively explored. Today, the human voice can often
be recognized within a sound classification task by a general-purpose audio sensing framework [50, 51]. Sehgal
et al. [64] publicized a well-trained voice activity detection (VAD) app for commercial smartphones. However,
the general VAD process falls short of identifying the source of the voice. For example, such existing solutions
cannot identify if the detected voice is from the user of a device or from someone else talking in the background.
This makes it challenging to extend the existing work for modeling spoken communications, which is mostly
characterized by the turn taking of different speakers [38]. Recently, Nadarajan et al. [56] studied the feasibility
of detecting voice activities related to a user based on audio collected by a chest-worn badge. Similarly, Little et al.
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[46] proposed an approach based on a custom-designed wrist-worn device, and they showed that it is possible to
identify a user’s speech from the background sounds by training on data collected from a large group of wearer
and non-wearer participants.
Unlike all the previously mentioned efforts, our work aims to infer user behaviors related to interactions

such as one-way speech and conversations, by making use of an off-the-shelf smartwatch. Besides, unlike the
above studies that are developed for specific use cases such as meetings [56] or patients of depression [46], we
examine our conversation detector based on varying unconstrained social events in everyday life. Moreover, we
demonstrate the real-time capability of our system for a commercial smartwatch, which was not presented by
any of the above work.

2.4 Face-To-Face Conversation Detection with Acoustic Sensing
To recognize spoken interactions among individuals, a common method is aggregating information from multiple
devices. For example, voice frame matching [72] and mutual information of audio signals [8, 12, 52] collected by
a pair of audio recorders can be indicators of whether two individuals are involved in the same conversational
session. Recent work has also explored the usage of vocal features [4, 39, 41], Doppler profiling [79], and the
fusion of audio and Bluetooth signals [52] collected from multiple smartphones to infer interactions among
individuals. Despite the promising results obtained by these existing solutions, the fact that multiple devices have
to be triggered simultaneously can be an obstacle for scaling and personal usage. In contrast to these approaches,
our work studies the potential of modeling spoken interactions between a user and other individuals based
on acoustic data collected by a single smartwatch. Recent commercial products such as the Apple AirPods are
announced to be equipped with conversationally-aware features for better user experience [5]. To the best of our
knowledge, however, our study is by far the first in the literature to quantify the performance of face-to-face
conversation detection in unconstrained daily living scenarios by using audio data collected from a watch.

3 AUTOMATED CONVERSATION DETECTION

3.1 Task Formulation
In daily living scenarios, not all speech is conversation, and not all speech captured by a smart device is related
to the user. Admittedly, the definition of conversation can heavily vary in different contexts [70], but a common
agreement in the literature is that a conversation should be formulated as a spoken interaction between at least
two participants [15, 70, 71] with valid turn-takings between the speakers [15, 21]. By considering common
scenarios in practice, the detection model of our system is developed to be a three-class classifier. In our study, we
define conversation as our first target class, where audio instances of this type should contain in-person spoken
communications with valid turn-takings between the device user and at least one other participant. Specifically,
an instance without any speech turns taken by the user (e.g., conversations recorded on a television) is not
considered to be a valid conversational instance in our study, since we emphasize the detection of conversations
that involve the user. In addition to conversations, we refer to our second target class as other speech. This includes
speech instances generated by the device user that do not contain valid speech turns by other social participants.
Common examples in our study include user activities of reading or story-telling. Other recorded sound types
are categorized as ambient sound in our study, including ambient noise, silence, or background voice such as TV
sounds or someone talking nearby.
Our system is developed such that a user does not need to adapt the system to his or her own voice or the

acoustic environments. Besides, we focus on instance-level recognition, where we apply a fixed granularity of 30
seconds as the recognition window. Selection of the window size is empirical, and a window size of 30 seconds has
been commonly used in prior work on conversational analysis [7, 12, 61] since it provides a reasonable balance
between the precision of inference and the coverage of turn-takings in a conversational episode.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 3, Article 109. Publication date: September 2023.



Automated Face-To-Face Conversation Detection on a Commodity Smartwatch with Acoustic Sensing • 109:5

Fig. 1. Overview of our proposed framework (the fusion model). It is based on a customized neural network architecture that
fuses feature representations extracted from different model setups. Conv: convolutional layers; FC: fully-connected layers;
FSD: foreground speech detector; SCD: speaker change detector.

3.2 Conversation Modeling
As discussed earlier, a canonical approach of conversation detection with acoustic sensing is comparing the
correlation of voice streams recorded simultaneously by multiple social participants to determine if someone
is in a conversational event with others. However, this was often conducted in a controlled environment and
required dedicated recording devices for individual participants. By including modern deep learning techniques,
we re-consider this problem for a more realistic setting based on a single device. Specifically, three research
questions are explored:
(1) What would be the performance of conversation detection in the wild by applying existing deep learning

models trained exclusively on public acoustic event datasets?
(2) By applying neural networks, can we obtain a reliable inference performance for conversational data while

maintaining a reasonably compact model size for a smartwatch?
(3) Is it possible to capture additional speech features (e.g., speech proximity to the watch) with a smartwatch

and apply feature fusion to enhance conversation detection for the user of the watch?
To explore the first question, we studied two popular deep learning models, CNN14 [33] and YAMNet [19],

which are both developed based on the large-scale public YouTube AudioSet [18]. In addition, we leveraged a
pre-trained YAMNet model as a feature extractor and built a customized neural network classifier based on our
user dataset for a comprehensive comparison. Details of the model architectures and setups will be presented in
Section 3.3.
For question 2), we compared the usage of a convolutional neural network (CNN) and sequence models for

conversation modeling. The CNN we tested was based on the original MobileNetV1 [23], a general-purpose deep
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learning model architecture optimized for mobile platforms. Different from the pre-trained YAMNet, this model
was built with our user dataset from scratch. Sequence models such as the long short-term memory (LSTM)
have been demonstrated to be effective for the modeling of speech turns [77]. This also inspires our study. Since
in-person human conversations are formulated and can be characterized by the transition of speech turns [15, 21],
a model dedicated to speech turn modeling may be a good candidate for conversation detection as well. We thus
adopted the model architecture of a speaker change detector (SCD) [77], originally used to detect speaker
change points in audio frames, as one of our baselines. A speaker change point is the boundary of speech turns
for different speakers in a conversation. Correspondingly, speaker change detection is a binary classification task
aiming to infer the existence of such boundaries in audio frames.

The exploration of question 3) is based on prior work [56] that presents a method of detecting user’s speech on
a wearable device by distinguishing voice activities in close proximity to the device (typically the wearer’s voice)
from the background sounds. The detection of the user’s voice activities is thus independent of the user’s voice
fingerprints, and the model trained to classify the foreground wearer’s voice and background sounds is referred
to as a foreground speech detector (FSD). Although the original study was aimed at chest-worn recorders in
meeting environments, we believe that this same method may also be applied to smartwatches and to obtain
indicators of whether the device wearer is involved in a conversational event or not. By adopting the FSD, we
can capture the wearer’s speech cues on a watch without building a model with the user voice samples apriori.
Following the setup of the FSD, we further investigated a strategy for feature fusion based on a customized

neural network architecture (Figure 1). The customized fusion model consists of a sequence architecture, and is
jointly optimized with general-purpose acoustic features and knowledge representations obtained by a pre-trained
FSD. In the next section, we will describe the detailed architectures and setups for each of the models.

3.3 Detailed Model Architectures
3.3.1 Models trained on AudioSet. The Google AudioSet is one of the biggest public acoustic event datasets
nowadays, containing over 2M 10-second clips of soundtracks extracted from public YouTube videos. The dataset
is highly class-imbalanced, including a total of 527 human-labeled sound classes. Several sound classes are relevant
to human speech and conversations, such as Speech, Conversation, Shout, Narration, etc. Given the rich acoustic
context contained in AudioSet, we first explored direct adoption of models trained on the dataset for conversation
detection with real-life audio recordings. In our study, we chose CNN14 and YAMNet. The CNN14 is a general-
purpose deep acoustic event detector developed and evaluated based on AudioSet, achieving state-of-the-art
detection performance. It is a stack of multiple convolutional layers, with around 80M trainable parameters.
YAMNet, on the contrary, is based on the MobileNetV1 CNN architecture for mobile devices. Although the model
is also trained on AudioSet, it is much more lightweight with around 3M trainable parameters.

We followed the public source code of both models12 to set up the inference. For both models, the input audio
was sampled at 16 KHz mono. The model inputs were spectrogram features extracted from the audio. To handle
the class label mismatch between AudioSet and our study, we categorized the AudioSet classes into three types.
Specifically, an inferred class of either Conversation, Chatter, or Whispering was considered equivalent to our
target class of conversation. The AudioSet classes of Speech, Shout, Screaming, Laughter, Narration / monologue,
and Crying / sobbing were equivalent to other speech. All other AudioSet classes were categorized as ambient
sounds. Since our target classes are mutually exclusive, we counted the top-1 class predictions from the models as
the final inference results.

3.3.2 Foreground speech detector (FSD) baseline. The original FSD takes as inputs a one-second audio instance
each time and generates an inferred probability of foreground speech. In our study, we modified the shape of the
1https://github.com/qiuqiangkong/audioset_tagging_cnn
2https://www.tensorflow.org/hub/tutorials/yamnet
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neural network layers to fit for our 30-second conversational instances. Additionally, while the original setting
of the model was limited to certain statistical and spectral features due to privacy constraints, we used more
descriptive spectrogram features in our study.

Our FSD consisted of three 2D convolutional layers with the ReLU [3] activation (Figure 1, top left). The kernel
size for each layer was (4×4), with a stride of (2×2). The outputs of the layers were padded to be of the same size
as the inputs. Besides, each convolutional layer came with batch normalization and a max-pooling operation of
(2×2) kernel with the same stride. The fully-connected layers were activated by the ReLU activation except for
the output. As a baseline model for conversation detection, the FSD had three neurons as output. As a feature
extractor, however, the FSD had only one neuron as output. The fully-connected layers were also followed by
batch normalization. To connect the convolutional layers and the fully-connected layers, the outputs of the last
convolutional layer were flattened. The model had 0.5M trainable parameters.

3.3.3 Speaker change detector (SCD) baseline. The SCD consisted of two bi-directional LSTM layers and three
fully-connected layers (Figure 1, top right). Different from the FSD, the extra LSTM layers enable the SCD to
better capture the speaker turn patterns in an audio sequence. The output sequence of the LSTM layers was
directly passed to the first fully-connected layer without flattening. Outputs of the first two fully-connected
layers were activated by the Tanh activation function, and then globally averaged along the temporal dimension.
For the baseline test in our study, the output layer was modified as three neurons, activated by Softmax. The
number of trainable parameters was 0.7M.
Inputs to both the FSD and the SCD were the same spectrogram features extracted every 30 seconds. We

sampled the input audio at a sampling rate of 16 kHz, and then framed the audio at a size of 8,000 samples
with 50% hop for the fast Fourier transform (FFT). The number of frequency bins was kept as 128, resulting in
image-like spectrogram features of shape (128×120) per instance. Before fitting a model, we normalized the FFT
features globally with their mean and standard deviation.

3.3.4 The fusion model. As mentioned earlier, we explored model fusion strategies based on the original FSD and
SCD to augment the overall conversation modeling performance. Canonically, feature fusion can be implemented
at different stages of classification, from the input stage to the output decision stage [10, 29, 43]. In our study, we
compared feature fusion at the intermediate layers of the neural networks (our proposed architecture) and at
the final output layers of the individual models, respectively. Our study showed that the intermediate fusion
yielded the best inference performance with a smaller model size (results in Section 5). To enable the fusion, we
designed a customized neural network architecture (Figure 1, bottom), maintaining a similar model size compared
to the individual baselines. The new fusion model consisted of two branches, each responsible for the foreground
representations obtained by the FSD and the general-purpose acoustic spectrogram, respectively. Specifically, the
FSD in the fusion model was developed with a separate foreground dataset we prepared ahead of time. While
training the fusion model, the FSD was fixed and only used as a knowledge extractor. The output representations
of each branch were then concatenated along the temporal dimension and fed to a stack of LSTM layers.
Both branches of the fusion model fit with the same spectrogram features as mentioned above, but we sliced

the spectrogram to be 30 1-second clips for foreground knowledge extraction to improve the temporal precision
of the representations. Hence, the input shapes per instance were (128×4) and (128×120), respectively, for the two
branches of the fusion model. In our study, we extracted embedding features from the first fully-connected layer
of the FSD instead of the last, since these yielded a more stable training performance for the fusion model. Before
concatenation, the extracted foreground representations were stacked every 30 seconds to match the output
shape of the other branch. The 1D convolution was performed along the temporal dimension of the features
in each branch. The number of trainable parameters was 0.8M for the fusion model, which is lightweight for
real-time deployment on edge devices.
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Table 1. Scripted activities and the corresponding time schedule of the activities for our audio collection.

Schedule Scripted Activities

3:30pm Reading out loud a text passage
4pm Making a telephone call
4:30pm Watching TV
5pm Face-to-Face Conversations
5:30pm Outdoor Conversations
6pm - 8pm Meal Preparation and Dining

3.3.5 Other models developed with our user dataset. In addition to the mentioned models, we developed and
evaluated two extra models based on our user dataset. The first was MobileNetV1, which we trained from
scratch. The second was YAMNet trained on AudioSet as an acoustic feature extractor, followed by a customized
fully-connected neural network classifier developed on our dataset. Specifically, we extracted clip-averaged
acoustic embedding features of 1,024 dimensions from YAMNet. The classifier consisted of three fully-connected
layers of size 128, 128, and 3, respectively. Inputs to both models were the same 30-second spectrogram, as
described.

4 SEMI-NATURALISTIC DATA COLLECTION

4.1 Study Script
Following the design of our models, we then conducted a semi-naturalistic study for a rigorous and comprehensive
evaluation of their performance. This IRB-approved study took place in the homes of 18 groups of participants.
Each group consisted of one primary individual wearing a commercial smartwatch (Google Fossil Watch Gen 4)
with audio capture capabilities, i.e., the device user, and at least one more individual in the home. Participants
were asked to follow a script of six activities, shown in Table 1 and detailed below.

(1) Read a Text Passage: The user of the watch was required to read aloud a 434-word excerpt from a
Wikipedia page, which typically lasted between two and three minutes.

(2) Place a Telephone Call: The second scripted activity was to place a telephone call between the smartwatch
user and another remote researcher. The script did not specify any requirements regarding the location or
content of the conversation, allowing the call to be performed in a completely natural way.

(3) Watch TV: The third activity entailed watching content on a TV or laptop with the sound on for around
10 minutes. Conversations were allowed during the activity.

(4) Conversation Indoors: In the fourth activity, indoor face-to-face conversation, all participants of the
group played the NASA decision-making survival game [20] while sitting around a table. This activity
was designed to shed light on the speech patterns of natural interactions within a group of people, so all
participants were encouraged to talk during the discussion. The motivation of this setup was to collect
people’s speech patterns while naturally interacting with others.

(5) Conversation Outdoors: For the fifth activity, participants were instructed to walk outdoors for at least
five minutes and chat with each other on any topic of their choosing.

(6) Meal Preparation and Dining: The final scripted activity involved meal preparation and dining, where
the user was instructed to take charge of cooking for the night of the study. This activity enabled us to
collect conversational audio mixed in with kitchen and cooking sounds.
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Although the activities were pre-specified, we emphasized the naturalistic aspect of data collection. The
activities took place in participants’ own home environments and were performed without the presence of the
research team. Hence, other household members were free to join and talk to the specified study participants
without restrictions. Additionally, the scripted activities were timed to align with people’s actual daily routines,
and we left 30-minute gaps between each scripted activity to ensure that participants had sufficient time to
complete them. For all of the activities except TV watching, the script did not specify a set time for the activities
to end.

4.2 Protocol and Procedures
All of our studies were conducted remotely. Before each study, a researcher delivered the smartwatch, the text
materials for scripted activities, and the study instructions to the participants. On the day of the study, the
researcher connected with the participants remotely via Zoom. The researcher then described the details of the
study, answered any questions from the study participants, and taught the users how to complete the smartwatch
setup, a process that typically took 10-15 minutes. Then, the researcher logged out of the meeting and the
recording began.

To facilitate data collection andmake the study as naturalistic as possible, audio was recorded with a smartwatch
continuously throughout the day. For activities that demanded privacy (e.g., going to the bathroom), the users
could temporarily remove the watch and re-wear it afterwards in a manner similar to how they initially wore
it. Also, we required that the watch not be covered by clothing to eliminate noises produced by friction with
clothing and to ensure that the activity sounds would not be muffled. The users were asked to check the status
of the app before each specified activity to ensure that the app was recording properly by checking to see if
the timer on the app was running. To remind the users to check the app and to simplify our data annotation,
we also asked them to roughly write down the time stamps of the timer when they checked it. In the event of
technical issues or questions, participants were able to reach researchers via text or phone call. After 8pm, the
users stopped the recording and the study was complete. The data was saved automatically after the app was
stopped. A researcher picked up the study equipment and materials from participants after the completion of the
study and had them sanitized and prepared for the next study.

4.3 Participants
In total, we collected data from 18 groups of participants. Overall, we did not pose any requirements on their age,
handedness, occupation, or number of household members in their homes. By working together with a local
recruiting agency, we enrolled a diverse set of participants including college students, an engineer, a book keeper,
a travel agent, a local government campaign manager and a tattoo parlor owner. Participants’ ages ranged from 15
to 59, and we aimed for gender balance in our study cohort. All study participants were fluent in English or native
English speakers. Table 2 provides additional details about the study groups. 10 out of the 18 groups consisted of
only two study participants, while the remaining contained three or more social participants, including extra
household members throughout the study process.

4.4 Data Annotation
After each group of data collection, the audio was transferred to a server from the smartwatch, where we first
determined the audio segments of the scripted activities by listening back to the full audio clips. The time points
noted down by the participants were also used as reference points for better segmentation of the audio. In the
next step, we examined each of the audio segments and annotated the audio instances. Our dataset was used
for two purposes- first to build the FSD and then to evaluate our conversation models. Hence, two groups of
researchers were engaged to annotate the data, each including two independent annotators. The first group
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Table 2. Overview of the collected study participants (Participants: number of participants recruited for the study; Household:
number of actual household members of a group; M: Male, F: Female). We required diversity in gender and age to ensure
better generalization of our collected data on the public.

Group # Participants Household Gender Age Handiness

1 2 2 F, F 18, 20 Right
2 2 2 F, F 19, 20 Right
3 2 6 (1 baby) F, F 37, 14 Right
4 2 3 (1 baby) F, M 29, 32 Left
5 2 3 M, M 36, 15 Left
6 2 4 M, F 41, 15 Right
7 2 2 F, M 55, 18 Right
8 3 3 F, M, F 45, 43, 10 Left
9 3 3 F, M, M 55, 59, NA Right
10 3 5 (1 baby) M, F, M 44, 25, NA Right
11 2 2 M, F 41, 41 Right
12 2 2 F, F 65, 64 Right
13 2 2 M, F 26, 26 Right
14 2 2 F, M 19, 28 Right
15 2 2 M, F 21, 22 Right
16 2 2 M, M 24, 22 Right
17 2 2 M, M 26, 24 Right
18 2 3 F, M 26, 26 Right

annotated the audio data at a granularity of one second to determine instances of foreground user speech. The
second group annotated the audio at a granularity of 30 seconds for the three target classes of our study.

4.4.1 Annotation of foreground speech. At each second, our annotators assigned one of the three labels foreground
speech, other sounds, and ambiguous sounds to the clips by listening to the audio content. Foreground speech
includes situations when only the device user talked within the second, or if there was an overlap between the user
and other human speakers. All other sound types, including speech from other participants and ambient noise,
were categorized as other sounds. Instances of silence were also counted as other sounds. The label ambiguous
sounds was used for instances where the annotators were not confident about the sound type. This was observed
for some study groups when the voice between the smartwatch user and the other participants was too similar to
each other, since the study was conducted remotely and we could not monitor the entire process.
To verify the quality of annotating the foreground instances, we selected one interaction session from a

participant group and computed the inter-rater reliability between the annotators. We used the Cohen’s kappa
to measure the pair-wise annotation quality of our data. Compared to some other measures such as the joint
probability of agreement, the Cohen’s kappa can be more robust to the effects of agreement by chance, especially
given our small number of target classes. We obtained a mean of 0.91 Cohen’s kappa, indicating good agreement
amongst the annotators [34].

4.4.2 Annotation of face-to-face conversations. For every 30 seconds, our annotators applied three mutually-
exclusive labels: conversation, other speech, and ambient sounds, as defined earlier. Again, labels conversation and
other speech were assigned with an emphasis on speech truly generated by the user. Speech or conversations
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Fig. 2. Sample spectrogram features used by our models, extracted from different instance types. All features are converted
to the log scale for better visualization. Y-axis: Frequency bins; X-axis: Frames.

captured on the television or from irrelevant participants in the house were included in ambient sounds. Besides,
ambient sounds also included noise of appliances in the house, activities of daily living sounds, and white noise. In
general, we did not count single words or ritualised speech such as ’hey’, ’emm’, ’ahh’, and laughing or coughing
sounds as a valid speech turn. In rare cases, we noticed that there were simultaneous conversational streams of
the users and other speech types in the same 30-second window. Such clips were still annotated as conversation
given that a conversational event was included. It is noted that our annotation was not bounded by the types of
scripted activities. Instead, it was only based on the speech turn patterns of the instances.
To verify the quality of the annotated conversational instances, we randomly selected samples from two

interaction groups to compute the inter-rater reliability. We observed a similarly high agreement level of 0.88
Cohen’s kappa.

4.5 Collected Data
In total, we obtained around 32 hours (114,637 seconds) of audio recordings for the semi-naturalistic study,
including 26,982 user foreground speech instances. Additionally, we obtained 1,780 instances of conversation,
accounting for 45.7% of the total audio. Other speech and ambient sound accounted for 19% and 35%, respectively.
Figure 2 shows sample spectrogram features used by our models, extracted from different instance types3. The
features were converted to the log scale for better visualization. We notice that the instance of other speech (e.g.,
user reading out a text passage) tends to have a more uniform frequency distribution within the vocal region
over time than those of conversational instances (e.g., game discussion and chatting during meal preparation).
This indicates that the spectrogram features may capture the transition of speaker turns in conversations, which
is reflected in the inconsistency of the frequency distributions. In addition, the instance of ambient sounds can be
distinct from conversation and other speech generated by the user. An example is watching TV, where the vocal
frequency distribution of the television is highly distinct from those of the remaining three instances.

5 PERFORMANCE AND ANALYSIS
In this section, we describe the experiments we conducted for conversation detection with our semi-naturalistic
data. Specifically, we evaluated the performance of our model and compared it against the other baselines by
aggregating all the participants’ data, since this gives us a better sense of how the models perform over the study
participants in general.

3More samples can be accessed at: https://doi.org/10.18738/T8/U6CFIP
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5.1 Evaluation Setup
As described earlier, we built a speech representation extractor based on the FSD architecture for our fusion model,
so the training of the representation extractor and the conversation models was separate. For all conversation
models developed on our user dataset, we applied the categorical cross-entropy loss with an Adam [31] optimizer.
The learning rate we used was 0.01, with the Beta values of (0.9, 0.999). We trained a model until it reached either
a maximum epoch number of 100 or a best validation accuracy for 15 consecutive epochs. The batch size was 128.
The training setup for the representation extractor was similar, except that we used binary cross-entropy as the
loss for foreground detection and switched its output activation to Sigmoid. To create the models, we used the
TensorFlow [1] Keras API in Python.

To evaluate the conversation models, we followed a leave-one-group-out (LOGO) evaluation scheme, where all
but one group of study participants were used for model training and the remaining group was used to derive
checkpoint models. In each LOGO fold, we reported the macro (unweighted) average of class F1 scores, macro
class recall, and macro class precision as the performance metrics for the multi-class setting. Using the macro
average enables us to understand the model performance by treating all target classes with equal importance,
eliminating the effects of imbalanced class distributions of the evaluation set. We calculated the mean of the
metrics for all groups of participants and then reported the global mean for the LOGO study.
By training with the foreground dataset, the foreground representation extractor we used for our fusion

model achieved a macro F1 score of 82.0% for the binary foreground detection over all participants. The result
demonstrates the effectiveness of the model in capturing the foreground speech cues based on the smartwatch
audio recordings. Hence, we leveraged its extracted representations to enhance the fusion model for conversation
detection.

5.2 Overall Model Performance
The LOGO experiments were conducted individually for each conversation model, and Table 3 shows the results
of the experiments. For CNN14 and YAMNet trained on AudioSet, only inference was performed. To reiterate,
the three research questions we hope to address are:
(1) What would be the performance of conversation detection in the wild by applying existing deep learning

models trained exclusively on public acoustic event datasets?
(2) By applying neural networks, can we obtain a reliable inference performance for conversational data while

maintaining a reasonably compact model size for a smartwatch?
(3) Is it possible to capture additional speech features (e.g., speech proximity to the watch) with a smartwatch

and apply feature fusion to enhance conversation detection for the user of the watch?
Regarding research question 1), we can see from Table 3 that the classification results obtained by CNN14 and

YAMNet trained on AudioSet are the worst among all tested models. The higher model complexity of CNN14
does not improve its performance for recognizing the user’s conversations. As a comparison, the combination of
YAMNet as an acoustic feature extractor and customized fully-connected neural network significantly improves
the recognition performance from an F1 score of 28.9% to 65.5%, with a comparable model size (3.3M to 3.4M). The
results and comparison indicate the significant domain shift between conversational data obtained from public
YouTube videos and conversations from audio recordings collected by a smartwatch in daily life. Customization
of the models based on real-life user data can be very helpful for a more reliable model performance.

To explore research question 2), we compared the model performance based on our user dataset. It can be seen
that the best recognition performance is obtained by the two sequence models, SCD with LSTM and the fusion
model. A possible explanation is that the temporal patterns of the audio streams may reflect the change of speech
turns which can be used to characterize human conversations, and these patterns may be better captured by the
sequence models. Furthermore, the sequence models obtain a reasonable inference performance with a relatively
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Table 3. Overall classification performance for conversation, other speech, and ambient sound ; data based on the 18 groups of
study participants. The fusion model achieves the best inference performance with a compact model size, which is preferable
for deployment on wearable platforms.

Model Macro F1 Macro Recall Macro Precision # of Parameters

CNN14 (AudioSet) 23.9% 42.4% 30.3% 79.7M
YAMNet (AudioSet) 28.9% 44.6% 28.4% 3.3M
FSD 61.7% 63.1% 64.9% 0.5M
YAMNet (AudioSet) + FC 65.5% 66.2% 76.4% 3.4M
MobileNetV1 66.3% 67.7% 68.5% 3.3M
SCD (LSTM) 71.6% 71.3% 77.6% 0.7M
The Fusion Model (Proposed) 76.2% 77.3% 77.7% 0.8M

compact model size, especially compared to the tested general-purpose deep CNN. This is more desirable for
on-device deployment.

Compared to the other models, our fusion model achieves the best inference performance for the LOGO study,
with an F1 score of 76.2%, a macro class recall of 77.3%, and a macro class precision of 77.7%, for all participants.
The better results show the effectiveness of model fusion over the individual baseline models. Specifically, the
inclusion of the foreground features provides additional user speech cues, which are effective for the model to
determine user involvement in a conversational event.

Last but not least, the model size is also an important factor to consider for model deployment on real devices.
Table 3 summarizes the number of trainable parameters for each model. In general, the fusion model achieves
good inference performance with a reasonable model size. As mentioned earlier, we also conducted an experiment
based on decision-level fusion of the FSD and the SCD. To do so, each of the baselines was connected with
individual LSTM and fully-connected layers, and the output class probabilities were averaged between the two.
The macro F1, recall, and precision of the decision-fusion model were 75.2% , 75.8% , and 76.8%, respectively, for
the LOGO experiment. The model size was 1.3M. Hence, by comparing the inference performance and the model
size, the intermediate fusion approach is a better choice for our conversation detector. The next section will be
focused on detailed analysis of the model performance for the semi-naturalistic study.

5.3 Result Analysis
To better understand the performance of our conversation detector, we examined the class-wise performance
by aggregating results over all groups of study participants (Figure 3). From the confusion matrices, we can
see that the model performance for classes conversation and ambient sounds is the best, with a class recall of
85% and 88%, respectively. Recognizing instances of other speech is the most challenging. By listening back to
the raw data, we found that several situations of other speech in the study could be confused with conversation.
For example, there were situations such as a user giving a telephone call (with no voice captured by the watch
from the other speaker), a user commenting on a TV series (with no response from other participants), or a user
giving a one-way instruction to others without seeking feedback. Although these instances were counted as
non-conversational types, their similarity with the conversational events could affect the model inference. The
right plot of Figure 3 shows the performance of the model for detecting conversations as a binary detection task.
The class F1 score and accuracy for detecting conversation are 83.2% and 85.0%, respectively, with a false positive
rate of 15.0% and a false negative rate of 16.3%. Although not strictly comparable, a recent method of conversation
detection following the same granularity (30 seconds) [7] achieves 87% detection accuracy, a result on par with
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Fig. 3. Confusion matrices of inferring classes conversation (conv), other speech, and ambient sound (ambient) (left), and
detecting conversations specifically (right). The data is based on our semi-naturalistic study with all 18 groups of participants.

Fig. 4. Group-wise performance of recognizing conversation versus other speech versus ambient sound for the smartwatch
users in the semi-naturalistic study.

ours. Their method used respiration signals collected from a wireless respiration sensor worn on the participant’s
chest, while we are focused on a practical system with acoustic sensing on a single commercial smartwatch.
Figure 4 plots the group-level inference performance for the semi-naturalistic study. The best performance

is observed for group 2, with a macro F1 score of 84.4%. On the contrary, participant groups 3 and 15 are the
worst, with a macro F1 score of 68.6% and 71.1%, respectively. To better understand the reason behind this, we
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Table 4. Inference performance (3-class) of the fusion model architecture with further optimization; data based on the 18
groups of study participants. FC: fully-connected layers.

Fine-tuning Strategy Macro F1 Macro Recall Macro Precision

Quantization, mixed 73.7% 73.8% 76.8%
Quantization, FC only 75.2% 76.0% 77.2%
Weight pruning (selected) 76.7% 76.8% 78.9%

further listened back to the audio data. We found that the degradation of performance might be attributed to two
main factors. Firstly, we found that the reliability of foreground detection could impact the overall performance
of the conversation model. The F1 scores of foreground detection for groups 3 and 15, for example, were 68.6%
and 53.5%, respectively, which were the lowest of all groups. The poor foreground results indicate that the user
speech for these groups tends to be similar to the acoustic events in the background, making it challenging to
recognize user conversations from the environments. Secondly, we noticed that the communication traits of
different participants could vary significantly, making the inference more challenging. For example, while some
participants were talkative and more detail-oriented during group discussions, some tended to be pure listeners,
with little vocal responses in the sessions. Such sparsity of vocal responses led to highly imbalanced speaker turns
in a conversational segment. In our study, we found that a conversation with sufficient turns back-and-forth was
helpful for inference. This is reasonable, because it makes a conversation more distinct from other speech types
such as a monologue.

5.4 Further Model Optimization
To facilitate model deployment on smartwatches, we further optimized our fusion model. Specifically, we deployed
quantization-aware training [27] and weight pruning [80] to further reduce the model complexity without loss of
inference performance. By applying quantization-aware training, we lowered the precision of parameters for the
neural network layers. By applying model pruning, on the other hand, we optimized the model by zeroing out
insignificant model weights, as this has been shown to be beneficial for the inference latency [80].
In our study, we followed the same training setup of our original fusion model for both quantization and

weight pruning to obtain the new checkpoints. Checkpoints with both strategies were fine-tuned based on the
pre-trained weights of our fusion model instead of training from scratch. We then conducted the same LOGO test
with the semi-naturalistic user dataset. For quantization-aware training, we examined quantization on either
multiple layers of the model or only the fully-connected layers. We converted the parameters from their original
32-bit float representations to 8-bit integer representations, including layer weights and activation. For pruning,
we applied constant sparsity throughout training, where 50% of weights per layer were pruned. Furthermore, the
pruning was applied for every 100 training steps. We used TensorFlow [1] to deploy the optimization.
Table 4 shows the change in the model inference performance with the two optimization strategies. Overall,

our fusion model optimized with both quantization and weight pruning can still maintain the original inference
performance. However, quantization for only the fully-connected layers is better than for mixed layers. This
is possibly because the early layers of the fusion model are more critical in capturing the patterns of the input
spectrogram and foreground features. Besides, we can see that the checkpoint model with weight pruning even
slightly outperforms the original baseline. A possible explanation is that the reduction of model complexity may
improve over-fitting and enable the model to focus on more important features. The benefits of the optimized
checkpoints regarding actual model sizes and inference latency will be further discussed in Section 7.
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Table 5. The majority of location contexts and activities of daily living captured in the free-living study.

Context Major Activity Percentage

Office Working, Studying, Meeting, Vacuum cleaning 40%
Apartment Watching TV, Having a meal, Chatting, Washing with water 23%
Street Strolling, Chatting 8%
Bar/Restaurant Having a party, Having a meal 8%
Vehicle Driving, Listening to radio, Chatting 7%
Clinic (Dental) Visiting a doctor 4%
Public building Giving a presentation, Attending a workshop 4%
Grocery/Supermarket Shopping 2%

6 FREE-LIVING STUDY
In this section, we will describe our effort for an extra free-living study based on four participants, including three
participants with three hours of data each and one participant with 35 hours of data collected over a week. The goal
of this extra study is to further examine how our model can be generalized in completely unconstrained scenarios,
especially under conversational contexts that were not covered in the training pool of our semi-naturalistic study.

6.1 Data Collection
To collect data for the free-living study, four individual users wore the same Fossil smartwatch as in the semi-
naturalistic study to record sounds in daily living. The users followed the same setup with the audio recording
app for continuous and unobtrusive recording. For one participant (a researcher of the paper), the study lasted for
a whole week, and the watch was worn during the daytime so that there could be a higher chance of capturing
the user’s social interactions with others during the data collection period. For the other participants, the study
lasted for around three hours each. The participants were free to choose the time scheduled for the study, but
they were required to choose a period when at least some conversations could be expected. All participants
simply followed their daily routines to perform a variety of activities in daily living, including working, having
meetings / discussions with other human subjects, studying, having meals with housemates, having a party, etc.
For the one-week data collection, we did not specify an exact start and end time each day for recording, but most
of the recording started before noon of a day and ended in the evening of that day to include the majority of
contexts during the daytime. For the other participants, they were instructed to stop recording on the watch after
roughly three hours of recording. Also, they were allowed to take off the watch for privacy reasons if necessary
(e.g., in the bathroom) and resumed wearing the watch afterwards. To ensure the unconstrained nature of the
study, we did not have further restrictions on the sensing environments or the social participants during the
recording period. An IRB form was signed by all non-author participants.
In addition to the smartwatch, we also provided three participants with a Google Pixel 1st Gen smartphone

equipped with our application. The goal of introducing this additional device was to understand how data
collection and inference performance at conversation detection might differ across these devices. Once recording
started on both devices, a marker sound was generated for synchronization. The participants were then instructed
to keep the phone around similarly to how they would with their own personal smartphones. The phone recording
was stopped whenever data collection with the watch was also completed. After the study, the participants were
required to take a note of the way they placed and kept their smartphones. The phone study was covered by the
same IRB approval as the watch study, and the participants were allowed to keep the phones away or turn them
off for a short period of time as needed for privacy reasons.
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Table 6. Detailed inference performance by applying one of our checkpoint models (with pruning) to detect face-to-face user
conversations versus non-conversations in the unconstrained free-living study, categorized by specific location contexts.

Context Macro F1 Weighted F1 Macro Recall Macro Precision

Overall 89.2% 92.4% 89.7% 88.7%
Overall (no pruning) 88.3% 91.7% 89.6% 87.2%
Apartment & Office 89.6% 95.8% 89.3% 90.0%
Bar & Restaurant 59.5% 81.5% 57.8% 68.3%
Grocery & Supermarket 72.3% 72.5% 77.0% 76.2%
Clinic (Dental) 78.8% 80.7% 80.3% 78.1%
Outdoor 88.9% 90.6% 90.7% 87.7%

After the study was completed, the audio data was transferred to a server for annotation. The annotation scheme
was the same as in the semi-naturalistic study, except that we only annotated the instances at a granularity of 30
seconds. For the one-week data collection, we found that the recording for one day of the week was shortened
due to an unexpected battery issue. In total, we collected 5,421 30-second instances (45 hours) of audio, including
35 hours for the one-week data collection and 10 hours for the cross-subject data collection. Table 5 summarizes
the main location contexts and associated activities of daily living captured in the entire study. The majority of
contexts include office, apartment, vehicle, and street, which account for nearly 80% of the total. This is expected
since the recording was mainly conducted during the daytime, where the majority of activities were performed
in such places, including working, studying, having meetings, or walking outdoors.

6.2 Results of Free-living Study
To evaluate the performance of our conversation detector in the free-living study, we selected a checkpoint
model (pruned) from the semi-naturalistic study and performed inference on the free-living data. Overall, the
3-class macro F1 score was 78.0%, with a precision of 74.5% and a recall of 83.4%. For the conversation class
specifically, the class F1 score was 83.3%. Since we addressed the inference of user conversations, and face-to-face
conversations were much more commonly captured than monologues in free-living situations, we reported
conversation detection as a binary task in detail by grouping the location contexts (Table 6). We additionally
reported the weighted average of the class F1 score, since this gives a sense of how the model performs for the
majority of data collected from the unconstrained situations.

From Table 6, we can see that the model inference performance in the free-living study is promising for most
scenarios. Also, the performance of the pruned model is still comparable to that of the original baseline without
pruning. By examining the location contexts, we can see that the model shows a strong performance for instances
collected from the apartment and office, and it performs reasonably well for outdoor situations as well. The
model performs the worst for crowded scenarios, such as in a bar or a restaurant. This is expected because of the
loud background noise and the overlap between the background voice activities and the user’s conversations.
To further investigate, we also computed the false positive and false negative rates in crowded scenarios. For
user activities such as having a meal together or sitting in a cafe, the false positive and false negative rates were
17.6% and 16.4%, respectively. However, the false positive rate increased to 81% for conversation detection in a
bar. A possible explanation is that the loud talking and singing voices in close proximity to the user significantly
suppressed the user’s own voice, which also confused the model in differentiating the foreground speech from
the background sounds.
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Fig. 5. Conversation detection performance for the free-living study across different tested subjects (left) and days (right).
We examined the macro F1 (blue), recall (green), and precision (orange) on individual participants (left), and the false positive
/ negative rates per day to understand the model’s robustness to varying human artifacts and environmental factors.

6.3 Result Analysis
To better understand the model detection performance at an event level, we examined the detection accuracy for
the conversation class based on both 30-second instances and longer acoustic segments. In the free-living study, the
class accuracy for the 30-second instances was 84.9%. To evaluate the performance for a conversational segment,
we then grouped the ground truth instances if their adjacent instances belonged to the same conversations. A
conversational segment was considered to be detected by the model if at least one of the instances inside the
segment was correctly detected, and this shows the ability of our model to identify long conversational events.
In this setup, the segment-level class accuracy was 92.0%, which shows a strong performance of our model to
identify such long events. As a further step, we estimated the proportion of conversational instances that were
correctly detected by our model within each conversational segment, and this can be used to estimate the duration
of conversations. We obtained an accuracy of 81.3% for this test, which means that the majority of the duration
of a conversation can be correctly identified by applying our model.

Figure 5 visualizes the detection performance of our model across human subjects and days of the study. From
Figure 5 (left), we can see that the cross-subject performance of the model remains consistent, indicating the
generalizability of our model against the variations of the users’ behavioral patterns. From Figure 5 (right), we
notice that the conversation detector tends to have a high false negative rate for the week-long test. By listening
back to the collected audio, we found that conversational events of very short duration (e.g., a single back and
forth) might be a possible reason for this. One possible solution is to include a dynamic windowing process to
better adjust the model to these short events.

7 REAL-TIME SYSTEM IMPLEMENTATION
To demonstrate the effectiveness of our method in practical scenarios, we built a prototype of the system on a
popular commercial smartwatch (Google Fossil Watch Gen 5) that has the same processor as the Fossil watch
used in the semi-naturalistic study. The watch is equipped with a Snapdragon 3100 processor with 8 GB storage
and 1 GB RAM. We replicated the feature extraction and inference steps in an Android application using Java to
deploy the framework and evaluated the battery and memory consumption of the application on the smartwatch
as discussed in this section.
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Table 7. Comparison of the original and the optimized fusion model architectures regarding model sizes and inference
latency per instance on a commodity Fossil smartwatch.

Model Setup Model Size Inference Latency

Original fusion model 3.0 MB 1,405 ms
Optimized fusion model 0.8 MB 981 ms

7.1 Inference
Consistent with our previous studies, the deployed application is capable of inferring sound classes of conversation,
other speech, and ambient sound at a granularity of 30 seconds. We define a cycle of inference as the entire process
of recording audio, extracting features, and model inference. The application executes individual inference cycles
independently when requested via the user interface. Once running, the application first triggers the device’s
microphone to continuously record audio at 16 kHz for 30 seconds. The FFT features are then calculated with the
Noise4 library, and the fusion network is called to generate the inference results. As discussed earlier, the deep
learning models were validated with the Python TensorFlow library on a server; consequently, the model in the
Android application is a selected checkpoint model from the semi-controlled study that is converted to TensorFlow
Lite (TFLite). To reiterate, the 3-class inference result for the pruned model is 77% in the semi-controlled study,
comparable to its baseline result (76%). Here we study the run-time capabilities of the TFLite models. Table 7
shows the comparison of checkpoint sizes in TFLite format with and without further optimization. For the pruned
model, the TFLite default post-training optimization was also applied. As compared in the table, the size of the
pruned TFLite model is only a quarter of the original model without further optimization, which is even more
lightweight to be deployed on the watch. Besides, the average latency for FFT calculation and model inference is
981 ms per instance with the optimized checkpoint over ten continuous cycles of inference on the Fossil watch.
This is also more preferable than the original fusion model without further optimization.

All processing was local on the device, and the recorded audio was deleted after each inference cycle. Currently,
the execution of audio recording and FFT extraction / model inference is in series for research and evaluation
purposes, and such latency is small compared to the input data duration of 30 seconds. In the future, we plan to
run these modules in parallel so that extra latency can be eliminated.

7.2 Power Consumption
We profiled the battery usage of the application on the smartwatch to determine its baseline performance and
identify areas in which the power consumption could be optimized. We monitored the battery level of the watch,
which has a capacity of 310 mAh, while one user wore the smartwatch with the application running continuously
until the device ran out of battery. Logs of the user’s activities during these study periods were kept. During
the study, the user performed a variety of activities in daily living, including attending class, working from
home and in the office, socializing with other human subjects, exercising, cooking, and driving. As the baseline,
the application performed individual inference cycles at a sampling rate of 16 kHz for each 30 second instance
of audio in a continuous loop without any system- or power- level optimizations. A fully-charged watch ran
for an average of 4.5 hours under this baseline design. Although this application could already be deployed to
commodity smartwatches in real life to collect and analyze a reasonable amount of conversational data, we
still consider the optimization of its power consumption as an important step for better practicality. Therefore,

4https://github.com/paramsen/noise
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Fig. 6. Comparison of battery consumption by testing with different power setups. The tests were run on a Fossil watch with
a 310 mAh battery.

we explored an audio energy-dependent adaptive sampling strategy to mitigate the power consumption of our
application.

7.2.1 Audio energy-dependent adaptive sampling. With the observation that the feature extraction and model
inference processes are the most power-consuming processes of the application, we explored an energy-based
VAD method to gate feature extraction and model inference without significantly missing conversations. The
goal of this power optimization strategy is to detect periods of silence in which these processes do not need to be
executed. To achieve this goal, the application first records one second of audio at 4 kHz, the lowest sampling rate
supported by the smartwatch, and examines the accumulated energy of the signal. If the audio energy exceeds a
threshold, the sampling rate increases to 16 kHz, and an inference cycle is triggered. Otherwise, the application
proceeds with the lower sampling rate and continues in this conditional manner. We empirically compared two
thresholds using data from the semi-naturalistic study based on the 10th and 30th percentile audio energy levels
in one-second clips with conversations. With this strategy, the battery life lasted for 4.7 hours and 6.7 hours,
respectively. Clearly, the strategy works better for a higher energy threshold, but this also comes at a cost of
missing certain audio levels of conversations, which needs to be balanced in deployment.

7.2.2 Trade-offs between conversation detection and the power cost. Figure 6 compares the baseline application’s
battery usage with that of the adaptive sampling strategy. The plot also shows the battery life for a fully-charged
watch of the same model without any applications running (18.3 hours). Admittedly, our current version of the
application consumes a significant amount of power on the watch. However, as presented in Figure 6, the power
consumption of our application can be mitigated with certain levels of optimization. We will discuss additional
feasible power mitigation strategies in section 9.3. Given the importance of spoken communications in people’s
social lives and the close relationship between a user’s conversational behaviors andmental wellness, the benefit of
our system lies in the fact that it helps users to uncover and monitor these processes in a completely unconstrained
and unobtrusive manner in daily living. With the current level of power optimization, our system can already be
applied to several real-world scenarios to capture a meaningful duration of conversational behaviors with light
system burden. In the future, we hope to further deploy our application on dedicated devices so that its runtime
can be extended to longitudinal use cases.
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7.3 Runtime Overhead
In order to estimate the application overhead on the watch CPU and memory, we analyzed run-time information
of the application extracted using Android dumpsys tool5. This tool provides statistics on system services running
on connected devices, including the run time of every application, instantaneous device memory usage, memory
usage over time, and CPU information per system service. We profiled the average proportional set size (PSS),
a measure of RAM that a process uses, including overlapping memory shared with other processes, of the
application over its entire run-time over one full battery charge. With the normal functions of the watch left
untouched, e.g., with internet and Bluetooth connection, with system monitoring applications running, etc., the
average PSS of the application was 41 MB, with a minimum of 37 MB and a maximum of 50 MB. The average PSS
of the application accounted for an average of 4.2% memory usage of the entire watch system. The CPU load for
the audio recording process was generally low (< 5%), but the feature calculation and model inference processes
were much heavier, taking up nearly 50% of CPU usage.

8 HIGHER-ORDER SOCIAL INTERACTION APPLICATIONS
Our long-term goal is to develop a platform for quantifying face-to-face social interactions in real-world settings.
As previously stated in the introduction, such a platform would support new applications in several disciplines,
including behavioral sciences [14, 26] healthcare [63, 69] and social network analysis [11, 73]. To understand the
feasibility of characterizing various aspects of social interactions using our automated conversation detection
approach as a foundation, we built and evaluated three additional supervised models:

• Social Context Recognition: Once a conversation was detected, we tested a model to track the location
and potential type of interaction, e.g., if the interaction happened during an office visit or at a party.

• Substantive Conversation Detection: As discussed by Basu [8], features of conversation scenes can be
used to describe different types of face-to-face human conversations. In this setting, long conversation
scenes typically indicate substantive conversations, which have been shown to be associated with greater
well-being [55]. We tested a model to characterize conversation type by its duration.

• Social Engagement Recognition: During a social interaction, there is a strong correlation between
turn-takings and a speaker’s engagement in the conversation [12, 24]. We tested a model to explore whether
we could quantify conversation engagement from detected conversations.

8.1 Modeling
To develop the supervised models, we leveraged five days of the free-living dataset, containing 1,698 minutes
(3,395 instances) of 30-second audio snippets. Among the instances, 205 minutes were detected as conversations
by our system. The output instances were annotated by a researcher based on the above three categories (social
context, conversation scene, social engagement). Specifically, we targeted four contexts based on the encountered
conversational events, including outdoor, bar, office and grocery, and others. Class outdoor was for events outside
of a building or in a vehicle. Class bar was associated with social events in a bar or restaurant. Office and grocery
included events of dental visits, conversations in a leasing office, or in a grocery. Other conversational events
or instances that failed to be detected by the conversation detection system were categorized as others. The
conversation scene was divided into two groups. The first group referred to conversations of long duration (no
less than one third of the instance length of 30 seconds), and the others were annotated as short scenes. Similarly,
two groups were created for the engagement study. Detected conversations with only a single back and forth
by the speakers or no switch of speaker turns were annotated as low engagement. Otherwise, the conversation
was annotated as high engagement. Examples of low engagement in our dataset included short greetings and
instructions with short responses such as ’yes’ or ’okay’. In total, we collected 114 minutes of conversations with
5https://developer.android.com/studio/command-line/dumpsys#syntax

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 3, Article 109. Publication date: September 2023.

https://developer.android.com/studio/command-line/dumpsys#syntax


109:22 • Liang, et al.

Fig. 7. Diary of face-to-face conversational moments generated based on the conversation time stamps logged by our app.
This information supports a full understanding of when and how long the device wearer physically interacts with other
human subjects within a given time window.

long scenes and 91 minutes otherwise. 116 minutes of conversations were categorized as high engagement, and
the remaining 89 minutes were categorized as low or no engagement, including non-conversational instances
incorrectly detected by the conversation detection system.
The supervised models we used for the study were based on hybrid convolution and fully-connected neural

networks. We built separate models for each of the recognition tasks. The architecture of the models is as follows:
Input→ Conv2D[32]→ Conv2D[64] → Conv2D[64]→ Flatten→ FC[128]→ FC[64] → FC[X]
where Conv2D[𝐾] denotes a convolutional layer with 𝐾 channels, each followed by a 2D max pooling of (2×2)

pool size and strides. The kernel size of each convolutional layer was (3×3), with a stride of 1 for the first two
layers and 2 for the third. FC[𝐾] denotes a fully-connected layer of size 𝐾 activated by the ReLU activation. The
output dimension 𝑋 was chosen based on the number of target classes. The model was fed with the same 2D
spectrogram features used for conversation detection. Besides, the parameter size of the models was 0.5M, which
is lightweight to be deployed on smartwatches in addition to the current application.

8.2 Results and Analysis
The models were developed and evaluated based on a 2-fold cross validation scheme, and the average of the best
fold-level performance was reported. By examining the models trained for context recognition, we observed
that most conversational contexts captured outdoors or in the bar / restaurant were correctly recognized. This
is expected, since the background noise in such contexts, including wind sounds and background crowd noise,
are often unique. Overall, the models achieved 85.1% macro F1 score, with a macro precision / recall of 85.4% /
85.1%. The models developed for scene and engagement detection also showed reliable performance. To detect
conversations of long scenes, the models achieved 82.2% macro F1 score, with a macro precision and recall score
of 82.3% and 82.2%, respectively. The F1 score for detecting high social engagement was 83.4%, with the same
precision and recall values. By deriving these cascaded models, we can further characterize detailed information
of the wearer’s conversations based on the detected conversational instances. For example, we may infer that the
wearer is having a formal meeting or discussion with others if several conversations of long scenes and high
engagement are detected in an office.
In addition to the above models, the time stamps of the detected conversational instances can also be logged

by our system. By gathering this information, we further show an example diary of the wearer’s detected
conversations for a 3-hour time window of the free-living study (Figure 7). In the figure, it can be seen that there is
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a strong temporal correlation between the logged conversational events and face-to-face social interactions. Hence,
this information supports a detailed diary of the wearer’s social moments, which can be used to automatically
track when and how long the wearer physically interacts with other human subjects within the detection window.

9 DISCUSSIONS
In this section, we discuss additional comparisons and analyses that are relevant when considering real-world
deployment of our proposed system: privacy, power consumption, the impact of clothing on data collection, and
how data collection and subsequent performance differ between a smartphone and a smartwatch.

9.1 Smartphone vs. Smartwatch
As described in Section 6.1, we collected audio data with a smartwatch and a smartphone for three participants in
the free-living study. The objective of introducing smartphones in the study was to understand how automated
face-to-face conversation detection might differ between these two devices in real life conditions. Smartphones
are highly personal devices but they are not always as close to individuals as a wrist-strapped smartwatch,
impacting the quality and relevance of captured audio. For external validity, participants were instructed to carry
the smartphone similarly to how they did with their own personal phones. In data analysis, we followed the
same steps to extract the spectrogram and foreground speech features from the smartphone data as we did with
the smartwatch. Finally, we performed model inference with the smartphone data using the same checkpoint
model as in the free-living study and compared the results against those with the smartwatch data.
As expected, participants did not keep the phone immediately close to them at all times, which affected the

quality of the audio. Our results showed that the macro F1 score for binary conversation detection dropped to
78.1% with the smartphone data for the participants (89.1% for the watch test). Similarly, the macro precision
and recall dropped to 72.7% and 84.3%, respectively (88.7% and 89.5% for the watch test). To further investigate
this aspect, we examined the precision for individual participants, and the precision values of the watch / phone
tests were 96.3% / 71.8%, 76.6% / 60.4%, and 93.6% / 87.4%, respectively. Based on the participants’ logs, the most
probable factor that affected the model’s performance for smartphones was that the participants mostly placed
their phones in their pockets or handbags during the test rather than always leaving them in hand or on the
wrist as with their watches. When placed in a pocket or handbag, the audio recorded by the smartphone was
inevitably affected by the surrounding material and became muffled or dampened. In some instances, this resulted
in missing conversations entirely, which caused a drop in recall.

9.2 Smartwatch Data Collection Underneath Clothing
Our free-living study was conducted in the spring and summer months, and participants were dressed for warm
weather. Therefore, the smartwatch was never hidden away underneath a sleeve or extra layers of clothing.
However, this is a realistic concern in winter months or colder climates. To explore this scenario, we overlaid
the audio captured in the free-living study with acoustic artifacts that would be present in this setting, such as
the sound of clothing rubbing against the smartwatch. To do so, one user wore a device on a wrist with a sleeve
covering and collected such acoustic artifacts for 30 continuous seconds. We then overlaid the dataset and the
acoustic artifacts at multiple signal-to-noise levels (3 dB and 20 dB) to simulate thin and thick layers of fabric
covering. The macro F1 score for the 3-class inference was 73.0% and 77.5%, respectively, for the two covering
levels (78.0% without covering, as presented earlier). For the detection of conversations, specifically, the binary
macro F1 score was 87.5% and 89.4%, respectively, where it was 89.2% without covering. Based on these results,
we confirmed that while the model’s performance slightly decreased in the covered setting, it was also robust to
such acoustic artifacts.
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9.3 Context-Driven Power Optimizations
Our application can run for at least 4.5 hours on a commodity smartwatch while simultaneously and continuously
collecting audio data and performing conversation detection. Given the limited battery capacity of smartwatches,
this is a promising achievement. However, it would be desirable to extend the operational range of the application
to at least 8-10 hours in order to approximate an entire workday. In section 7.2.1, we described a technique for
reducing power usage by dynamically adjusting the sampling rate. Here, we revisit the topic of power savings by
presenting early findings on two techniques that block the smartwatch’s microphone from capturing audio based
on user-specific contextual information. Beyond power reduction, a desirable byproduct of these techniques is
that they mitigate privacy concerns by constraining audio capture and processing for designated locations and /
or activities.

9.3.1 Location context. A user’s location can be an important determining factor in deciding whether the system
should be fully operational or not. In locations where conversations are not likely to take place, e.g., in a movie
theater or at a religious service, it might be reasonable to dynamically turn off audio capture to extend the device’s
battery life. Such assumptions will sometimes lead to inaccurate results, e.g., if conversations take place before or
after a movie while an individual is still at the movie theater. In this case, there is a clear trade-off between battery
life and conversation sensitivity. An alternative approach might be a user-configurable setting for restricting
conversation detection to certain places, e.g., work or home. For example, if a person lives alone and does not
typically interact with others after work, then the application can be programmed to turn off the microphone
and block audio capture when the user’s home WiFi network is detected. To experiment with this technique,
we conducted an initial proof-of-concept study where an individual who lives alone configured the application
to turn off the microphone when his home WiFi network was detected. Under these conditions, the battery of
the watch was extended to 6.25 hours when the individual was at home for 1.5 hours, and 9 hours when the
individual was at home for 6.5 hours. Although the gains from this technique depend on the amount of time at
predefined locations, our preliminary results validate this approach as a way to reduce the application’s power
consumption and mitigate audio privacy concerns.

9.3.2 Activity context and wearability. Another contextual element that can be used to determine the likelihood
of conversations, and whether audio should be captured and processed continuously, is the type of activity
an individual is performing. For example, while swimming, reading or meditating, it is very unlikely that
conversations will take place. Another useful cue for determining whether to trigger the audio processing pipeline
is whether the individual is actually wearing the smartwatch. This can be reliably achieved with sensors present
in smartwatches today. To demonstrate the feasibility of this technique, we conducted a pilot study in which one
individual launched the application in the evening and went to bed without wearing the watch. The smartwatch,
with the application running, was operational for 13.9 hours, with the watch off-body during 10.5 hours of that
duration. Again, while the gains of this technique depend on the duration of the watch off-body, this initial result
shows how physical activities where conversations are unlikely can be used to extend the application’s battery
life by reducing the duration of audio processing. Undeniably, if the user takes the smartwatch off for additional
activities that do involve conversations, conversations will be missed, so this microphone-gating technique should
only be applied to activities for which there is high confidence that few conversations will take place. This is
also a trade-off between the application’s runtime and conversation sensitivity that is intrinsic to this power
mitigation technique.

9.4 Privacy Considerations
Privacy concerns are front and center when it comes to audio capture in naturalistic and conversation settings
[32, 44, 78]. The primary way our current implementation addresses this issue is by executing the entire capture

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 3, Article 109. Publication date: September 2023.



Automated Face-To-Face Conversation Detection on a Commodity Smartwatch with Acoustic Sensing • 109:25

and inference processes on board, without transmitting or saving raw audio. Additionally, we also explored
techniques that result in privacy mitigation by triggering audio capture dynamically, depending on contextual
factors such as location, activity and device wearability. Yet, despite these measures, additional steps for protecting
privacy can be taken. In the future, we plan to extend our system such that the smartwatch can not only capture
sensor data but also filter or degrade the intelligible information within the audio on-board. As such, inference
will run on less sensitive data from users [62], thereby further limiting the risks of privacy leakage.

10 LIMITATIONS AND FUTURE DIRECTIONS
While the research presented in this paper points in a promising direction, it is important to underscore its
limitations and discuss opportunities for the future. Starting with our proposed approach and real-time system,
we explored how different power optimization strategies may be applied to improve the practicality of our
application. In addition to those approaches, there is still room to improve the model design and application
implementation. For example, our current solution addresses the potential connection between the on- / off-body
status of a smartwatch and the user’s expected conversations. In many real-life scenarios, there can be a broader
set of non-verbal behavioral cues, such as motion patterns of the wrist, which may be used as indicators to
reveal a user’s face-to-face conversations. Secondly, with our WiFi detection, one may set up a customized list of
locations based on a user’s conversation routines, and a further step is to build an active learning pipeline to
dynamically adjust the gating contexts based on the user’s preference. Thirdly, the usage of acoustic spectrogram
features may be further optimized in our system. Currently, our FSD module is executed in parallel with the
remaining part of the detection network. A possible direction is to enable a cascaded design where the FSD
can be executed first to examine the possible existence of user speech before triggering the extraction of the
spectrogram features. This is meaningful because the foreground detection process may be enabled based on
low-level features alone [56], and the extraction of such features can be less power-consuming. We intend to
address such directions as future work to further improve our application.
Additionally, our framework can still be improved according to different scenarios. For example, we focused

on instance-level recognition in our study with a fixed instance size of 30 seconds. However, human speech and
conversations can be highly dynamic in real life, and a fixed window size may fall short when it comes to further
characterizing conversations, such as revealing the moments of turn-taking behaviors [6]. Also, the inference
performance for other speech may be improved by leveraging a smaller window, especially given monologues
often short in duration. As mentioned earlier, our choice was mostly inspired by prior work in conversational
analysis. A possible future way to improve the model could be the development of adaptive windows based on
actual user speech.

11 CONCLUSION
Automated detection of physical conversations in daily living is helpful for quantifying user behaviors regarding
social interactions and potentially revealing the user’s mental health states. This paper presented a practical
system for user conversation detection with a single smartwatch by leveraging acoustic sensing. Based on our
neural network-based framework, our system was able to infer the existence of user physical conversations and
user speech against ambient sounds. To evaluate the framework, we conducted a semi-naturalistic study based
on 18 groups of participants in their own homes and a free-living study based on four participants wearing a
commercial smartwatch for continuous audio recording, including one participant collecting data over a week.
For detecting conversations, our model achieved 83.2% F1 score in the semi-naturalistic study and 83.3% F1 score
in the free-living study. We further discussed in depth the detailed performance of the proposed framework,
comparisons of different modeling methods, and a prototype of the system to demonstrate its run-time capability
on a popular smartwatch.
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